Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
AIMS Microbiol ; 8(4): 422-453, 2022.
Article in English | MEDLINE | ID: covidwho-2143976

ABSTRACT

In recent weeks, the rate of SARS-CoV-2 infections has been progressively increasing all over the globe, even in countries where vaccination programs have been strongly implemented. In these regions in 2021, a reduction in the number of hospitalizations and deaths compared to 2020 was observed. This decrease is certainly associated with the introduction of vaccination measures. The process of the development of effective vaccines represents an important challenge. Overall, the breakthrough infections occurring in vaccinated subjects are in most cases less severe than those observed in unvaccinated individuals. This review examines the factors affecting the immunogenicity of vaccines against SARS-CoV-2 and the possible role of nutrients in modulating the response of distinct immune cells to the vaccination.

2.
Future Microbiol ; 16: 1105-1133, 2021 09.
Article in English | MEDLINE | ID: covidwho-1381356

ABSTRACT

SARS-CoV-2 is the etiological agent of the current pandemic worldwide and its associated disease COVID-19. In this review, we have analyzed SARS-CoV-2 characteristics and those ones of other well-known RNA viruses viz. HIV, HCV and Influenza viruses, collecting their historical data, clinical manifestations and pathogenetic mechanisms. The aim of the work is obtaining useful insights and lessons for a better understanding of SARS-CoV-2. These pathogens present a distinct mode of transmission, as SARS-CoV-2 and Influenza viruses are airborne, whereas HIV and HCV are bloodborne. However, these viruses exhibit some potential similar clinical manifestations and pathogenetic mechanisms and their understanding may contribute to establishing preventive measures and new therapies against SARS-CoV-2.


Subject(s)
COVID-19/history , Pandemics/history , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/transmission , Climate , Disease Reservoirs/virology , Genome, Viral , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Mutation , RNA Viruses/pathogenicity , RNA Viruses/physiology , Reinfection/epidemiology , Reinfection/history , Reinfection/transmission , Reinfection/virology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/history , Respiratory Tract Infections/transmission , Virus Replication , COVID-19 Drug Treatment
3.
Aging Clin Exp Res ; 32(10): 2115-2131, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-738008

ABSTRACT

BACKGROUND: In December 2019, a novel human-infecting coronavirus, SARS-CoV-2, had emerged. The WHO has classified the epidemic as a "public health emergency of international concern". A dramatic situation has unfolded with thousands of deaths, occurring mainly in the aged and very ill people. Epidemiological studies suggest that immune system function is impaired in elderly individuals and these subjects often present a deficiency in fat-soluble and hydrosoluble vitamins. METHODS: We searched for reviews describing the characteristics of autoimmune diseases and the available therapeutic protocols for their treatment. We set them as a paradigm with the purpose to uncover common pathogenetic mechanisms between these pathological conditions and SARS-CoV-2 infection. Furthermore, we searched for studies describing the possible efficacy of vitamins A, D, E, and C in improving the immune system function. RESULTS: SARS-CoV-2 infection induces strong immune system dysfunction characterized by the development of an intense proinflammatory response in the host, and the development of a life-threatening condition defined as cytokine release syndrome (CRS). This leads to acute respiratory syndrome (ARDS), mainly in aged people. High mortality and lethality rates have been observed in elderly subjects with CoV-2-related infection. CONCLUSIONS: Vitamins may shift the proinflammatory Th17-mediated immune response arising in autoimmune diseases towards a T-cell regulatory phenotype. This review discusses the possible activity of vitamins A, D, E, and C in restoring normal antiviral immune system function and the potential therapeutic role of these micronutrients as part of a therapeutic strategy against SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/diet therapy , Coronavirus Infections/prevention & control , Cytokines/immunology , Pandemics/prevention & control , Pneumonia, Viral/diet therapy , Pneumonia, Viral/prevention & control , Vitamins/immunology , Vitamins/therapeutic use , Aged , Ascorbic Acid/immunology , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Th17 Cells/drug effects , Th17 Cells/immunology , Vitamin A/immunology , Vitamin A/pharmacology , Vitamin A/therapeutic use , Vitamin D/immunology , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamin E/immunology , Vitamin E/pharmacology , Vitamin E/therapeutic use , Vitamins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL